机器学习中的概率统计应用实践

一课讲透机器学习概率统计,快速打造算法基础核心能力

课程介绍

概率统计是机器学习,人工智能,计算机科学的基石,算法工程师不懂概率统计很难深入应用,本课程专门针对机器学习中的概率统计知识与难题,从数学理论、经典案例到 Python 对概率统计核心功能的实战,带你快速打造算法领域的基础核心能力,打开更广阔的进阶空间。

课程目录:

第1章 概率统计课程导学

第2章 统计思维基石:条件概率与独立性

第3章 聚焦基本元素:深入理解随机变量

第4章 从一元到多元:探索多元随机变量

第5章 极限思维:大数定律与蒙特卡罗方法

第6章 由静到动:随机过程导引

第7章 马尔科夫链(上):转移与概率

第8章 马尔科夫链(下):极限与稳态

第9章 隐马尔科夫模型(上):明暗两条线

第10章 隐马尔可夫模型(下):概率估计与状态解码

第11章 推断未知:统计推断的基本框架

第12章 探寻最大可能:极大似然估计法

第13章 贝叶斯统计推断:最大后验

第14章 近似推断的思想和方法

第15章 助力近似采样:基于马尔科夫链的采样过程

第16章 马尔科夫链-蒙特卡洛方法详解

 

课程进度:持更新完毕,放心下载

 

更多课程推荐

1、《 机器学习中的概率统计应用实践 》下载直通车

2、《 Python3入门人工智能 掌握机器学习+深度学习 提升实战能力 百度网盘 》下载直通车

3、《 JavaScript玩转机器学习-Tensorflow.js项目实战 百度云 》下载直通车

4、《 系统入门深度学习,直击算法工程师 》下载直通车

当天下载多套联系客服有优惠哦!

资源下载资源下载价格16.99立即购买    升级VIP后免费
支付后会自动显示网盘链接;百度网盘、无密自助下载即可,如果链接失效请联系微信:ITBOKE
站内部分资源收集于网络,若侵犯了您的合法权益,请联系我们删除!
赞赏是最好的支持
如果对你有帮助那就支持一下吧
立即赞赏
分享到:
赞(0) 打赏

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏

小月博客-一个专注于分享的技术博客
没有账号? 忘记密码?