极客时间 重学线性代数
课程介绍:
课程共分两个模块,分别为基础篇和应用篇。
基础篇主要讲线性代数的理论基础。从最简单、也是你最熟悉的线性方程组说起,在这基础上引出向量和矩阵,通过矩阵来解线性方程组的不同方法。并在向量和矩阵的基础上讲线性空间,因为在实践中,更多的是对集合的操作,也就是对线性空间的操作。最后讲解析几何,因为它使得向量从抽象走向了具象,让向量具有了几何含义。
应用篇结合线性代数的基础理论,讲解线性代数在计算机科学中的应用。有了之前的基础后,你再来看应用实践就会觉得简单很多。当内容涉及一些线性代数以外的其他数学领域时,课程也会给予一定说明。
课程大纲:
开篇词 (1讲)
开篇词 | 从今天起,学会线性代数
基础篇 (11讲)
01 | 导读:如何在机器学习中运用线性代数工具?
02 | 基本概念:线性代数研究的到底是什么问题?
03 | 矩阵:为什么说矩阵是线性方程组的另一种表达?
04 | 解线性方程组:为什么用矩阵求解的效率这么高?
05 | 线性空间:如何通过向量的结构化空间在机器学习中做降维处理?
06 | 线性无关:如何理解向量在N维空间的几何意义?
07 | 基和秩:为什么说它表达了向量空间中“有用”的向量个数?
08 | 线性映射:如何从坐标系角度理解两个向量空间之间的函数?
09 | 仿射空间:如何在图形的平移操作中大显身手?
10 | 解析几何:为什么说它是向量从抽象到具象的表达?
基础通关 | 线性代数5道典型例题及解析
应用篇 (6讲)
11 | 如何运用线性代数方法解决图论问题?
12 | 如何通过矩阵转换让3D图形显示到二维屏幕上?
13 | 如何通过有限向量空间加持的希尔密码,提高密码被破译的难度?
14 | 如何在深度学习中运用数值代数的迭代法做训练?
15 | 如何从计算机的角度来理解线性代数?
强化通关 | 线性代数水平测试20题
结束语 (1讲)
结束语 | 和数学打交道这么多年,我的三点感悟